
©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 1

Efficient Near
Real-Time Event
Ingestion using
DLT: Insights &
Lessons
Kavin-Engineer@nextdoor

©2024 Databricks Inc. — All rights reserved

• Nextdoor’s mission is to create a kinder world by connecting neighbors and real-world
connections

• We operate in the US, Canada, Europe & Australia today and have over 43 million
weekly active users

• We run on AWS cloud today

• We are hiring !!! Apply @ https://about.nextdoor.com/careers/

2

Introduction

https://about.nextdoor.com/careers/

©2024 Databricks Inc. — All rights reserved

• App is hosted in 4 AWS regions

• Up to 400k events / sec

• Includes client (impression, click, etc.,) & server events (requests, ab_tests.,etc)

3

Events

©2024 Databricks Inc. — All rights reserved 4

DLT adoption phases

Overview Development
Tuning

&
Optimization

Observability
&

Monitoring

Results

©2024 Databricks Inc. — All rights reserved 5

Overview
Nextdoor’s event ingestion pipeline pre DLT

©2024 Databricks Inc. — All rights reserved

• Http service published events to one Kafka topic per region

• Kafka-connect application dumped data to S3 bucket ~1 minute interval

• AWS Lambda partitioned the event and writes data to another S3 bucket with retry

• Hourly job in Airflow ran to add the partitions in HiveMetastore

6

Overview
Nextdoor’s event ingestion pipeline pre DLT

©2024 Databricks Inc. — All rights reserved

• Functional
• Events to reach Data Lake near real-time to enable quicker analysis
• At most once instead of at least once event delivery

• Non-functional
• No increase in compute and/or storage cost
• Insights into ingestion

7

Overview
Goals

©2024 Databricks Inc. — All rights reserved

• After deciding we wanted to stream in
data we decided to try DLT with
Autoloader

• DLT is Databricks managed and offers
schema evolution, exactly once per
streaming table

• Autoloader - Incremental ingests files
from a cloud storage like S3

• Datadog integration for observability
and monitoring

8

Overview
Vision

©2024 Databricks Inc. — All rights reserved

• Chose Python Interface over SQL

• Staging data - < 1% of production event volume

• Autoloader has lots of default setting

• cloudFiles.format : json

• Node types

• driver -> c5.2xlarge, workers -> m5.2xlarge

• Tags for cost attribution

9

Development
Considerations

©2024 Databricks Inc. — All rights reserved

• Pretty loose schema

• json_body: string, headers Struct<event: string, event_ts: bigint, ingestion_ts: bigint>

• Hive style Partition

• event_type={some_event_type}/day=dd-MM-YY/hour=HH

10

Development
DLT tables

©2024 Databricks Inc. — All rights reserved 11

Development
Staging

©2024 Databricks Inc. — All rights reserved

• Driver ran into OOM issues

• Each micro batch was taking
several minutes to run

12

Development
Production

©2024 Databricks Inc. — All rights reserved

• Spark Driver ran into OOM issues

• Autoloader directory listing caused driver to do diff of extremely high number of S3
prefixes

• Each Spark micro batch was taking way longer to run

• We were processing events from 60 days ago and running large micro batches

• Other - EC2 Spot termination

• Spot termination was causing spike in latency and increased cost

• Other - DLT failed because of missing checkpoints

• S3 lifecycle policy removed checkpoints making the DLT crash hard

13

Development
What went wrong

©2024 Databricks Inc. — All rights reserved

• cloudFiles.useNotifications: true - turns on FileNotification instead of Directory listing

• cloudFiles.queueUrl: <sqs-queue-url> - If you have existing SQS queue

• cloudFiles.maxFilesPerTrigger: 2000 - default is 1000.

• cloudFiles.includeExistingFiles: false - default is true, if you only care about new data

14

Tuning & Optimization
Autoloader tuning

©2024 Databricks Inc. — All rights reserved

• Switched to On Demand instances

• To avoid Spot termination and decrease cost and latency

• It turned out that On Demand worked out much cheaper

• Instance pools for driver & worker for faster recovery

• Fleet pools for workers for better availability

• On Demand worked out cheaper than Spot because of less interruptions

15

Tuning & Optimization
Cluster tuning

©2024 Databricks Inc. — All rights reserved

• Duplicative data between raw and partitioned table
costing 2X storage cost

• Solution: Combine into one DLT table with autoloader
and partitioning

16

Tuning & Optimization
Storage cost

©2024 Databricks Inc. — All rights reserved

• Latency can be different based on each data that's processed in micro batch. It is a
great metric to monitor too to track regressions

• Tune the autoloader for number of files and/or bytes till processing rate & input rate
should ideally be very close

17

Observability & Monitoring
Default metrics

©2024 Databricks Inc. — All rights reserved

• Spark observe API to send data specific metrics - real easy to use

• Min time to ingest an event from Nextdoor’s servers to get ingested to DataLake ~24
seconds

• The last event to reach DataLake is between ~2 - 3 minutes

18

Observability & Monitoring
Custom metrics

©2024 Databricks Inc. — All rights reserved

• SQS queue depth is good metric to monitor to ensure DLT is up and picking up new
messages

19

Observability & Monitoring
SQS metrics

©2024 Databricks Inc. — All rights reserved

• Optimized writes wrote bigger files automatically

• Additionally, maintenance cluster performs compaction & vacuum every day

• Autoscaling worked pretty well stabilizing at minimum of 10 & maximum of 20 nodes

• Structured Streaming UI was very helpful in understanding progress, latency etc

20

Results
What went well

©2024 Databricks Inc. — All rights reserved

● Because we reduced compute
cost by 75% with DLT over
previous solution

Finance team

21

Results
Finance was happy

©2024 Databricks Inc. — All rights reserved

● Because of increased data
freshness enabling analysis,
debugging & building near real-
time aggregates

● Better query performance than
the previous solution because
of large files & stats

Internal customers

22

Results
Data users were happy

©2024 Databricks Inc. — All rights reserved

● Because of the operational
visibility & better monitoring

Data Platform team

23

Results
Data Platform team was happy

©2024 Databricks Inc. — All rights reserved

• We are going to explore Serverless if possible to not have to worry about cloud
infrastructure.

• Strongly typed events in Parquet
• Supporting Structs, Arrays
• cloudFiles.format : parquet

• DLT auto restarts on backwards compatible schema and evolves it

24

Next

©2024 Databricks Inc. — All rights reserved

● Nextdoor team
○ Zack Shapiro - Head, Data Platform
○ Sebastian Csar - Software Engineer, Data Platform

● Databricks team
○ Toby Messinger - Solutions Architect
○ Jitesh Soni - Data Architect
○ Janelle Davies - AE

25

Thanks

	Efficient Near Real-Time Event Ingestion using DLT: Insights & Lessons
Kavin-Engineer@nextdoor
	Slide Number 2
	Slide Number 3
	DLT adoption phases
	Overview
	Overview
	Overview
	Overview
	Development
	Development
	Development
	Development
	Development
	Tuning & Optimization
	Tuning & Optimization
	Tuning & Optimization
	Observability & Monitoring
	Observability & Monitoring
	Observability & Monitoring
	Results
	Results
	Results
	Results
	Next
	Thanks

